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ABSTRACT

Data representation, which is often overlooked in many image processing and analysis
applications, is as critical as the algorithms applied to that data. When data is represented
properly, simple algorithms can be much more powerful than sophisticated and often com-
plex algorithms applied to an improper representation. In an image, the useful information
is generally mixed in with irrelevant information or noise and often it is difficult for the
computer to separate the useful information from the large volume of irrelevant data with-
out destroying much of the useful data. To provide a solid foundation for a good solution
to this problem, "multiresolution decomposition and synthesis" approaches have been
developed which decompose raw image data into a set of partial information channels,
where each channel represents a certain modality (or aspect) of the raw image. The chan-
nels can then be processed individually or cooperatively with a wide variety of results pos-
sible. After processing of the channels is completed, they can be selectively synthesized to
recoNr the original image, an improved version, or an image with certain features high-
lighted. In this way, the irrelevant information can be more effectively rejected or ignored
while the useful data can be used or modified in whichever manner is desired. For this
project, I have studied the usefulness of the nonlinear image pyramid, compared to the lin-
ear type of pyramid and raw data format, in the areas of image compression, image trans-
forms, and image enhancement via noise removal.
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ABSTRACT

Data representation, which is often overlooked in many image processing and analysis
applications, is as critical as the algorithms applied to that data. When data is represented
properly, simple algorithms can be much more powerful than sophisticated and often com-
plex algorithms applied to an improper representation. In an image, the useful information
is generally mixed in with irrelevant information or noise and often it is difficult for the
computer to separate the useful information from the large volume of irreitvant data with-
out destroying much of the useful data. To provide a solid foundation for a good solution
to this problem, "multiresolution decomposition and synthesis" approaches have been
developed which decompose raw image data into a set of partial information channels,
where each channel represents a certain modality (or aspect) of the raw image. The chan-
nels can then be processed individually or cooperatively with a wide variety of results pos-
sible. After processing of the channels is completed, they can be selectively synthesized to
recover the original image, an improved version, or an image with certain features high-
lighted. In this way, the irrelevant information can be more effectively rejected or ignored
while the useful data can be used or modified in whichever manner is desired. For this
project, I have studied the usefulness of the nonlinear image pyramid, compared to the lin-
ear type of pyramid and raw data format, in the areas of image compression, image trans-
forms, and image enhancement via noise removal.

1.0 Introduction

Multiresolution decomposition techniques are commonly used in variety of signal pro-
cessing applications [Salembier 26], including but not limited to image compression, pro-
gressive transmission, enhancement, restoration, analysis, et c.[Ranganath 426]. The
classical approach to image decomposition has been the repeated applications of a linear,
usually Gaussian, type of lowpass filter to obtain a frequency sensitive decomposition.
However, in many cases this may not be the best choice as some applications are better
suited for a size or shape dependant decomposition. Thus, instead of a decomposition
resulting in a division of frequency space, it may be desirable to have a decomposition of
the pattern spectrum.

When our research began, our aim was to investigate the applicability of morphological
decompositions to the area of image compression. It is well known that the linear type of
pyramid can yield compact image code; could the nonlinear decomposition lead to compa-
rable or even better general compression results?

Image compression can also be achieved through the use of image transforms, such as the
Discrete Cosine transform, K-L transform, Single Value Decomposition, et c. Transform
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coding, also known as block quantization, involves a unitary transformation of each block
so that a large fraction of the total energy is packed into relatively few transform coeffi-
cients. The image can then be reconstructed from these few coefficients with a minimal
amount of error. The next step was to examine the possibility that the image pyramids
could be more effectively transformed than the transformation of the original image with
respect to image compression.

Finally, the linear image decompositions can also be used for image enhancement and res-
toration. Restoration of noisy images and undesirable artifact removal are just two of the
possible areas that the pyramid structure can be effectively used. Also, because of the mul-
tiscale nature of the pyramids, some types of filtering can be done much more efficiently
on the pyramid planes than on the raw image data [Ranganath 4371. In this area, the possi-
bility that morphological pyramids could outperform the linear pyramids and equivalent
types of operations on raw image data was investigated.

2.0 General Pyramid Concept

The pyramid image decomposition technique is an iterative procedure designed to isolate
image features at different scales and to support more efficient scaled neighborhood oper-
ations through reduced image representation [Lee 41. In this section, an overview of how
the pyramids are constructed and then how the image can be synthesized from the data
will be given. Possible types of pyramid processing are discussed in great detail in a later
section. For the general explanation of the pyramid structure, terminology for linear pyra-
mids will be used as it is more widely understood.

2.1 General pyramid Structure

First, a lowpass decomposition of the original image is accomplished. The zeroth level of
the lowpass pyramid will be the original image, I. The image is then (linearly or morpho-
logically) filtered and down-sampled to obtain the next level. This is applied repetitively
to obtain the entire lowpass pyramid.

LO=I

(L i = D (F (Li_ l))'i=>l

'D(.)' represents the down-sizing operation which is simply a decimation by two in each
dimension, so for a two dimensional image, the down-sized image has 1/4 the pixels of its
parent. 'F(.)' is the filtering operation, usually convolution for the linear case and some
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type of morphological operation (Erosion, Dilation, Closing, Opening, et.c.) for the non-
linear application.

The bandpass pyramid is then generated using the lowpass pyramid by simply subtracting
each lowpass decomposition by the next lower level in the lowpass pyramid. However, the
lower level differs in size by a factor of 2 in each dimension. So, the image must be up-
sized, U(.), which is a point replication operation, and then interpolated, P(.). The interpo-
lator can be of whatever type the user desires. Often for linear pyramids, a Gaussian type
of lowpass filter is used, while the same or a morphological interpolator can be used for
the nonlinear pyramids. Thus the bandpass decomposition, Bi, can be specified in terms of
the lowpass decompositions. These bandpass images are often referred to as prediction
error or residuals because they are not true bandpass images due to the errors introduced
by the non-ideal filters and interpolator. Figure 1 graphically shows the construction pro-

B i  L i - P(U (L i

cedures for both the lowpass and bandpass pyramids.

Ll L2
3L3

SLAP P P

BB2

FIGURE 1. Construction procedures for the Iowpass and bandpass decompositions
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FIGURE 2. 2-D Spatial Frequency / Pattern Spectra Plot of Bandpass Pyramid

Figure 2 shows, graphically, how the bandpass pyramid will ideally look as the bandpass
decomposition of an image yields different bands of either spatial frequency or morpho-
logical pattern spectrum [Kelni 31. It must be noted that due to errors introduced by inter-
polation and less than ideal filters the actual frequency/pattern spectra plot will not be this
clean. One large advantage the pyramid structure has over some other types of representa-
tions, such as a Fourier transform, is that the bandpass images retain their spatial locdlity.
Shapes of interest or even single objects can be enhanced without modifying the rest of the
image.

One important property of this type of image representation is that the image is repre-
sented completely. Full reconstruction is possible without using all of both pyramids. As
shown in Figure 1, an order 'k' pyramid will have k distinct levels, L0 --> Lk , in the low-
pass pyramid and k levels, B0 --> Bk. 1, in the bandpass pyramid. However, only the
smallest lowpass image, Lk , and the bandpass pyramid are needed for full image recon-
struction. It will later be proven that at most 4/3 of the pixels in the original image are
required to store the entire bandpass pyramid and Lk
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1, (recover) LI L2

U 1'U

3
B2
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FIGURE 3. Course to fine synthesis process

Figure 3 shows the image synthesis process which recovers either the original or improved
version from the bandpass pyramid, B0 --> Bk.2, and the smallest lowpass image Lk.1
which are shown as darkened images. The reconstruction process starts with up-sizing,
U(.), Lk.1 and then interpolating the larger version. The next step is to add in the smallest
of the bandpass pyramids, Bk-2 to obtain Lk-2. These steps are then repeated all the way
up the pyramid until reconstruction is completed.

Li = (Bi +P(U(Li+ 1 )))foralli,i=l-->N-2,and

I = L 0 = B 0 +P(U(L1 ))

This method of reconstruction, course to fine synthesis, nicely lends itself to a controlled
synthesis process. For small 2-D images this is not a real concern, but when 3-D imaging
is attempted the controlled synthesis could likely save the user considerable time and
effort when examining say 3-D medical data. Controlled synthesis works in the following
manner: first at the coarse resolution, volumes of interest are identified; as the synthesis
progresses only those regions identified as interesting are fully synthesized; the end result
being that the user now has a 3-D image with the sections deemed interesting at the finest
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resolution and the areas not of concern are 'roughed out.' This would be ideally suited for
the progressive transmission of 3-D image data.

2.2 Burt's Laplacian Pyramid

The Laplacian pyramid proposed by Burt and Adelson in 1983 uses the identical construc-
tion process discussed above. Their goal was to use the pyramid structure as a method for
image compression and they did get some decent results, over 5 to I on USC.girl with
only 0.88% mean squared error and nearly 11 to 1 on the 'Walter' image with only 0.43%
mean squared error. To achieve this result they further reduced the entropy in by quantiz-
ing the pixel values in each level of the pyramid images used in reconstruction. I used their
'best' pyramid as a benchmark for my nonlinear pyramids so a short overview of their
work is required.

As previously stated, the general image pyramid construction procedures are identical to
the process discussed earlier. In fact the only difference between their 'best' pyramid and
all of my nonlinear pyramids is the filter, F(.), applied to the image to generate the lowpass
pyramid. All the other operations are identical.

The filter they chose to use is a 5 x 5 weighted average which attempts to minimize the
error after a level is down-sized, up-sized, and then interpolated. One dimensionally, Fig-
ure 4 shows a graphic representation at the pixel level of the Gaussian pyramid generation
process.

L2

c Lt

FIGURE 4. l-D graphic representation of Gaussian pyramid generation process

The parameters "a', 'b3', and 'C' are the one dimensional weighting values used in the 5 x
5 convolution. The mask 'w(m,n)' is designed to be separable and symmetric with respect
to the center of the mask, m--O and n---. Their second stipulation was that every pixel at a
given level must contribute the same total weight (1/4) to the next level's nodes, equal
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contribution. This is satisfied when a + 2c = 2b. It should also be noted that the mask is
normalized to 1. These constraints are satisfied when: (w(o) = a), (w (1) = w (4) = 1/4),
(w (2) = w (-2) = 1/4 - a/2). So the only option in their design is what value for a will be
used. When a--o.4, this turns out to be, after repetitive application, a reasonable approxi-
mation to a Gaussian function and as the value for a decreases the function becomes more
flat. The best results they obtained was when the value for a was chosen to be 0.6. The
function is actually trimodel in nature when a > 0.5.

2.3 Nonlinear Pyramids

Now that the general pyramid's and Burt's Laplacian pyramid's construction procedures
have been discussed, we turn to the nonlinear pyramids. The construction procedures for
the nonlinear pyramids are no different than the general construction techniques. The only
difference again being the filter used to generate the lowpass pyramid.

2.3.1 Basic Morphological Operators

For the benefit of any who actually read this report and may not be familiar with the basic
morphological operations, I will give a very brief overview of the main operators used.
There are two simple operators which define most morphological operators or filters, ero-
sion and dilation. Let B represent the structuring element and I be the image. The gray-
scale dilation and erosion of image I by structuring element B can then be defined as:

Dilation = (9 B = MAXx,y E B (i +x,j +y + Bx, y) (forall (ij e I))

Erosion = IeB = MINx,y r B (i+x,j+y - Bx, y) (forall (ijE 1))

These definitions are assuming the structuring element is symmetric with respect to the
center of B and B's center is defined to be x = 0 and y = 0. For simplicity, the erosion by
structuring element B will be written as EB(.) and dilation as DB(.). By combining these
two operators, other morphological operators can be defined. The opening operator is sim-
ply an erosion followed by a dilation and closing is a dilation followed by an erosion.

Opening = O8 (I) = DB(EB( 1))
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Closing = CB ( 1 ) = EB(DB(I))

2.3.2 Morphological Filters

Any one or combination of the above morphological operations can be used as the filter to
generate the decomposition pyramid. The most commonly used filters are the opening and
closing operations, though interesting results can be obtained by combining the basic
operations in a different manner. When a linear type filter is used, the bandpass images
generally represent different portions of the frequency domain; but if a morphological fil-
ter is used, the bandpass images are representative of some portion of the pattern spectrum
in the image.

3.0 Image Compression

3.1 General Compression Measures

Two general measures of image compressibility are entropy and variance. If pixel values
in an image are assumed to be statistically independent, then the entropy of the image -

yields the minimum number of bits per pixel (bpp) required to exactly encode the image. It
is possible to approach this value using current compression techniques. Our test images
contain 8 bpp corresponding to gray scale values from 0 to 255. Thus in the worst case the
entropy of a given image would be 8.0 bpp while in the best case, a s, 1gle valued image,
the entropy would be zero.

255

H = - f(i) xlog 2 f
i=0

'H' represents the image's entropy which is calculated from the images histogram; 'f(i)'
is the normalized frequency of each gray scale value. In Bun's paper, he calculated the
entropy of 'USC.girl' to be 7.57 bpp; while using my own software, I determined the
entropy for the original image to be 7.59 bpp. So my software was reasonably accurate
and supported their result.

Another representative measure of the compressibility of an image is variance. For the
best case of a single valued image, the variance will be zero; while for the worst case for a
512 x 512 image, the variance would be 16,256.31. It must kept in mind that these two
measures are not directly related. For example, the worst case for variance is in fact an
image with a very low entropy, 1.0 bpp. The variance is calculated to be the normalized
sum of the pixel differences from the mean then squared.
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s2= (X Xm )2 X l1

The result from Burt's paper for the variance of USC.girl is 2736 and the result I obtained
for the same image was 2793. Again, the result is not perfect but very close.

3.2 Pyramid Compression

The motivation for using the pyramid structure is supplied in Burt and Adelson's paper on
Laplacian pyramids Due to the high correlation of neighboring pixels, it is redundant to
store image data as a simple matrix of pixel values. So a format is needed where the pixels
are decorrelated if high compression rates are to be achieved. In predictive coding, the
image is viewed as a single stream of pixel values, raster format, and previous pixel values
are used to estimate the next pixel. Then the error between the predicted and actual value
is what is stored for that pixel. Because prediction depends upon previously decoded val-
ues, this is said to be causal in nature [Burt 532]. Non-causal prediction based on a neigh-
borhood should yield better prediction and thus better compression results. Non-causal
prediction does suffer because simple sequential coding is no longer possible; techniques
such as image transforms which encode blocks are generally used.

One point about this type of pyramid structure that must be considered if image compres-
sion is to be attempted is the pyramid is oversampled. This is one reason why there has not
been much effort put into using the pyramid structure for data compression. The zeroth
bandpass level contains the same number of pixels as the original image and then you
must add the rest of the required levels. If we assume the 2-D image to be square with sin-
gle dimension size of n, then the zeroth level contains n2 pixels, the first level then has n2/
4, and so on. If we i assume a worst case where there are the maximum number of pyr-
amid levels, k, the total number of pixels is a geometric series approaching 4n 2/3.

2 1 4n 2

n  x( 4 ) =>-3
i=0

3.3 General Compression Results

Part of the original goal of this project was to compare the usefulness of nonlinear and lin-
ear image pyramids for image compression. Two general measures of compressibility,
entropy and variance, were used to compare the two types of pyramids. It is already
known that the linear type of pyramid can provide good image compression despite the
fact that it is over complete by 1/3 [Yu 161]. In general, the image pyramid decorrelates
the pixel values leading to a set of histograms as pictured in figure 5.
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s = 2793 H =7.59

0.012 . . . . . . . . . . .. .

S. . . . .. ...

a)

I 0.25.2.

s2 7.3 4.5 S 9090H 4..

0 0

bO) cO)

s2 153.9 H 5.07 s2  180.8 H 5.10
0.2

. . . .. .. .. .. .... ..... . .. .... . ... .. -. . ...... .. . .... ............ ... .... . ..... ... 0 .2 1 .. . .. ... ........... ... .. .. ...... . . . . . . . . . . . . . . . . . .

. . . . ...... .. . ...... ....... .. .... .. ....... ................ .... . .... .... ..... . 0 . . . .. . . . . . . . .. . . . . -. . . . . . .. . .. . . . . . . . . .

0 0

bl) C)

FIGURE 5. Histograms of (a) original USC.girl (bo) Burt.0 (CO) Close.0 (bl) Burt.1 (c 1) Close.1

Figure 5.a is the original USC.girl and you can see that the image is somewhat random in
its distribution and is thus very difficult to encode. Figure 5.bO shows the highest level
channel of the Laplacian pyramid, B0 , note that the distribution is now unimodal with
entropy of 4.75 bpp and a variance of 78.3. The next level of theLaplacian pyramid, B 1, is
shown in figure 5.bl and has an entropy of 5.07 bpp with a variance of 153.9. The best
nonlinear pyramid performance, a closing by a level 3 x 3 cross filter, is shown in Figures
5.c, B0 , and 5.cI, BI . The vari,.nce of the top nonlinear pyramid level, BO, is 90.9 with a
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corresponding entropy of 4.84 bpp; the next level of the nonlinear pyramid, B 1, has an
entropy of 5.10 bpp with a variance of 180.8. Note that the histograms of both the closing
and linear pyramids are very similar in nature but have slightly different entropies and
variances. It is difficult to see a difference at this scale but the differences become apperent
when the histograms are zoomed in on. Due to the nature of the pyramid structure, the top
level residual images must be highly compressible if the overall structure is to be com-
pressible. The top levels contain most of the pixels in the image and thus only the top two
levels were examined.

In an attempt to obtain better results than the Burt's Laplacian pyramid, we used three dif-
ferent structuring elements of varying heights. The two dimensional shapes of the structur-
ing elements starting at a 3 x 3 cross and increasing in size on up to a diameter 5 disk.
Constant valued and Gaussian shaped structuring elements were attempted with varying
results. However, in general, the smaller the structuring element was, with height zero, the
better it performed with respect to compressibility measures. Appendix A holds the results
obtained for the different structuring elements and masks used. Several different images
were also attempted, two cytological cell samples, and a slice from a 3-D image of a
guinea pig cochlea, with the same general results.

These results show that the morphological pyramid can NOT provide consistently better
image compression than Burt's Laplacian pyramid. The results do point out that the Open-
ing and Closing pyramids always out perform the Erosion and Dilation types of pyramids.
This should be obvious as the residue image represents the change in the original image,
after filtering, down-sizing, up-sizing, and then interpolating, and the change is smaller
when Opening or Closing is done.

4.0 Single Value Decomposition (SVD)

Burt stated in his Laplacian pyramid paper that the noncausal prediction techniques, such
as pyramids, were best suited for image transforms such as SVD [Burt 532]. Thus, the
next area of investigation was to see if the pyramid data structure, both linear and nonlin-
ear, could use single value decomposition and recovery for data compression. This sec-
tions goal was to see if SVD could be used for compressing the different bands of the
pyramid type of data structure. To be successful, the SVD of the pyramid must provide
higher image compression than the SVD of the original image. A brief overview of the
general SVD generation and reconstruction theory followed by the results obtained for
this section will be given.

4.1 Transform Theory

Single value decomposition is a numerical technique used to diagonalize matrices in an
attempt to achieve data compression [Andrews 4251. Deterministically, the SVD of an
image is known to be the optimal transform for energy compaction [Jain 179], as the
image is decomposed into a set of sorted eigenimages where they are sorted by the energy
contained in each. Thus, by choosing only a small number of these eigenimages, it is pos-
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sible to attain a high image compression ratio while minimizing the error due to compres-
sion loss. This will be lter explained in more detail.

The original image, shown by the matrix [G], can be represented by a set of eigenvalues,
or weights, and two orthonormal matrices [U] and [V].

[G] = [U] [w] [V]T

'T' represents the transpose of the 'V' matrix. The matrix 'w' is the eigenvalues for the
decomposed image and is actually all zero with the exception of the main diagonal which
holds the sorted eigenvalues. There are several methods available to compute the 'U', 'w',
and 'V' matrices including Symmetric QR, Hestenes Method, Golub-Kahan ..... The
method used in this case was dictated by availability, 'Numerical Recipes in C' provides a
decomposition routine based on the Golub method along with a reconstruction routine.

The reconstruction of the image from the 'U','w', and 'V' matrices is accomplished by
multiplying each weight with the multiplication of corresponding vectors 'Ui ' and 'Vi'';
then adding up all the new matrices. Each 'i' represents what is known as an eigenimage.
Due to the sorted nature of the eigenvalues, the first eigenimage contains the most infor- -
mation, then the second eigenimage, and so on.

R

G = XwixUixVT
i= 1

W1  W2  ...- WR-O

= W R+ 2  ... W n  0

Depending on the specific image being decomposed, some of the weights may go to zero
and thus be unnecessary for full image reconstruction. Some of the weights will also be
very small relative to the highest energy weight, w1 . So it is then possible to use even
fewer than 'R' weights, 'K', in the reconstruction and still recover the image with a mini-
mal amount of error. Again, because of the energy packing property of SVD, this error is
minimized in the following fashion.
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K

Gk = wiXUiT

K= 1~G-GK~ = 2 iU~T

i=K+l

r + +

GK WlUIV 1T w 2U 2V2T w 3U 3V 3T WKUkVKT -

FIGURE 6. Graphical representation of eigenirnages in reconstruction

Figure 6 shows graphically how the original image is reconstructed from the set of eigen-
images. In the figure, the level of shading is representative of the amount of information
present in image; the darker the image, the more information present.

4.2 Application Specifics

One of the major problems with using SVD is that the computation of the matrices
'U','w', and 'V' must all be computed for each individual image and this computation is
O(N3) [Andrewsl 426]. This is the worst computational efficiency of all the well known
transform domains for image representations. Due to this problem and in the interest of
not using all the CPU time, each image is divided into a set of smaller subblocks of dimen-
sion 64 x 64. Even with this subdivision of images, each pyramid, 512 x 512 original
image, took well over 20 minutes to decompose.

If the comparison is to be accurate, the pyramid decompositions followed by SVD must
give better results than the SVD of the original with the same number of values being
stored. So, the relationship between the number of values for the original and for the pyra-
mid decomposition must be derived. Let, 'Sb' represent the I-D size of the subblock, 'n'
be the I -D size of the square original image, 'MO' be the number of weights per subblock
used in the recovery of the original image, and 'Mpi' represent the number of weights per
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subblock to recover level 'i' of the pyramid. Each weight used corresponds to a single
eigenimage and (2 * Sb + 1) values are required to store each eigenimage block.

n 2 ni2
(3-) Mo(2Sb+ 1) > (2Sb+ 1) ( ) MO+ -) Mpl +..

Mpl Mp2 Mp3
Mo > MpO + M + 16- + M3 + ..

For simplicity sake, if it is assumed that Mp = MpO = Mp 1 = Mp2 . then the summa-
tion simply becomes a geometric series. The relationship between the number of weight
used to recover the original must be at least 4/3 the number of weights used to recover the
pyramid. This relationship is based on the recovered pyramid with the specified number of
weights being of the same or better quality than the original recovered with its correspond-
ing number of weights. If this relation holds true, then the pyramid SVD outperforms the

Mo> 4
Mp - 3

SVD of the original image.

The next question to be answered is what is better quality defined to be. For my work, I
chose to use a combination of visual inspection and RMS error. RMS error is not always
an ideal measure of image quality, but when used in conjunction with visual inspection, it
can be a reasonable measure of image quality.

4.3 SVD Results

As previously stated, in order for the pyramid SVD to gain an advantage, it must have the
same or better image quality than the SVD of the original image using 4/3 the number of
weights as the pyramid SVD. For my actual comparison, see Figure 7, the 4/3 factor was
not even taken into account; if it had been, the results would be even more obvious.
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FIGURE 7. RMS error versus number of weights per subblock in reconstruction

As image quality is inversely related to the RMS error, Figure7 shows that the relationship
between RMS error and the number of weights used for recovery is approximately expo-
nential in nature, (1 - ae-aM). However, the results were not what we were hoping to
attain. The SVD of the original USC.girl consistently outperformed both the linear Lapla-
cian pyramid SVD and the morphological pyramid SVD. There was not a noticeable dif-
ference between the linear and morphological SVDs. The morphological pyramid used for
this example was a Closing by the 5 pixel diameter disk; it performed the best out of the
nonlinear filters attempted.

Although the figure shows only RMS error, I did visually compare the SVDs at various
points and it appeared that the RMS measure was providing an accurate representation of
the image quality. So, I can come to no other conclusion than the combination of SVD and
image pyramid combination is NOT an effective method for image compression.

Figure 8 shows the results for the reconstruction of USC.girl, 512 x 512, from (a) the raw
image data and (b) a closing by 5 pixel diameter flat disk pyramid. The raw image was
recovered using 15 weights persubblock while the bandpass pyramid was reconstructed
using 12 weights per subblock, the 4/3 relationship holds true. It can easily be seen that the
recovery from the raw data is much clearer and of better quality.
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FIGURE 8. SVD Results: a) Raw image recovered, 15 weights b) Close (disk 5 pixel dia.) 12 weights

5.0 Pyramids as Image Processing Platforms

After the lack of success in the previous two attempts at using morphological pyramids,
the application of the pyramids as an alternative image process platform was attempted.
We wanted to check the possibility that morphological pyramid could outperform both the
linear type of pyramid and the processing of the raw image data. To be successful at pro-
viding an alternative image processing platform, some special area or problem had to be
better solved with a morphological type of pyramid.

First, the possible types of pyramid processing applications should be reviewed. These
operations are not specific to morphological pyramids; instead, they are applicable to any
type of image pyramid. Then, specifically what was accomplished in this area will be
examined.
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5.1 Potential Applications

5.1.1 Independent Band Processing

It is possible to process each band, or level, of the pyramid as a separate image in the same
way that the raw image data is processed. However, because of the fact that each band is a
portion of the pattern spectrum or frequency domain, different results will be achieved
after the image is synthesized. Thus, a more powerful image processing platform is
obtained.

Some examples of independent band processing include but are in no way limited to
multiband noise coring and multiband interpolation. The noise coring operation can be
accomplished by taking each high pass image, generated as the difference between the
lowpass image and the previous lowpass image, and setting the pixel value to zero if it
falls below a predetermined threshold value. Then, when the image is reconstructed from
the bandpass and single lowpass image, the end result will be that much of the high fre-
quency noise will be removed from the image. The loss of thudded information will be
minimal in comparison to what would be lost if this operation were attempted at a single
scale instead of a pyramid [Lee 16].

Multiband interpolation can be used to fill in missing information in an image. Though
single scale interpolation operations exist, this method provides an alternative method to-
fill in the missing data. Figure 9 shows the method of interpolation using a morphological
closing operation. Note that the missing data should be set to zero in both the lowpass
decomposition pyramid and then in the bandpass pyramid.

F-11

Reconstructed
Cln-ing -Interpolated

Image

Lowpas.s. Bandpass
Decomposition Decomposition InteatedBadpass

D~ecomposition I Lee 171

FIGURE 9. Multiband Interpolation
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5.1.2 Cooperative Band Processing

Though the independent band processing does offer some unique possibilities, a more
interesting application of image pyramids is cooperative band processing. Because of the
pyramid property that spatial locality is maintained between pyramid levels, it is possible
to perform operations between bands. This provides a method of processing unavailable
when using raw image data.

Exceeding information can be removed from an image through the use of between band
correlation which involves relating the data in a given band with other bands in the image
pyramid. Two types of correlation operations that are available are a weakening correla-
tion strategy and a strengthening correlation strategy.

The weakening correlation constrains the data intensity of a given band by taking the pixel
by pixel minimum between the given bands and its adjacent bands. It is also possible to
preprocess the adjacent bands with operations such as morphological dilation and then
perform the weakening operation. For our application, the correlation was only done with
one adjacent band gi+1. In this case, the adjacent band, Bi 1, differs in size from Bi by a
factor of two in each dimension, so it must first be up-sized then interpolated.

Bw = Min (BiDilate (P (U (B i + 1 ))) )

In this way, the resulting band image, Bi, is constrained to the dilated value of its adjacent
band,Bi+,. This weakening operation can be applied iteratively from coarse (fine) resolu-
tion down to the fine (coarse) resolution [Lee 181.

The opposite of the weakening operation is enhancement. Image features can be
enhanced, brightened, by performing the correlation between bands; but, instead of using
a minimum operation as in weakening, a maximum operator is used and a type of weaken-
ing is first accomplished. This operation results certain features being enhanced with the
size and degree of brightening being dependant upon the size and shape of the structuring
element being used in the dilation and the structuring element used in the initial pyramid
decomposition.

Be = Max (BiMin (Dilate (Bi), (P (U (Bi+ 1)))))

5.1.3 Selective Synthesis

By leaving out certain bands in the reconstruction it is possible to obtain different results.
If the goal is to extract certain patterns below or above a certain size, then by using only
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the bands containing the desired patterns with the given size in the reconstruction it is pos-
sible to obtain an image with the desired properties.

5.2 Specific Applications and Results

5.2.1 Strip Artifact

The first area that was investigated in hopes the morphological pyramid would prove
superior was the removal of a structured noise, a strip artifact, from an image of a guinea
pi- cochlea, Cochlea, Figure 1O.a. This type of artifact could possibly result from a digi-
tizer with a neighborhood of photodetectors that were working incorrectly. The strip arti-
fact introduced was five pixels wide with random bidirectional noise in the strip.Two types
of linear pyramids with different frequency properties, a pair of morphological pyramids
and classical noise removal techniques on the raw image data were attempted.

The morphological process used to remove the strip involves the use of two different types
of nonlinear pyramids and weakening strategies. The first step was to generate an opening
pyramid using a level 3 x 3 square structuring element. Then a weakening strategy using a
dilation by the same structuring element of the smaller adjacent bands was used to remove
part of the strip. The weakened bandpass pyramid was then reconstructed. The partially
improved image was then again decomposed. This time, however, a closing pyramid
based upon a flat disk, 5 pixels in diameter, was used. Then this bandpass pyramid was
weakened using the smaller adjacent band dilated by the disk used in the decomposition.
Finally, this bandpass pyramid was reconstructed resulting in the best removal of the strip,
see Figure 1O.b.

The two linear pyramids, each having a mask with different cutoff frequencies, used
between band correlation to remove the strip. If the recovered images from both are exam-
ined, Figures lO.c and lO.d, it can be seen that both had partial success in removing the
strip but failed to completely remove it. Even in the black area outside of the cochlea, the
strip is still partially visible.

The classical attempt used was a repetitive convolution with a Gaussian type of lowpass
mask. As can be seen in Figure 1O.e, this attempt also failed to successfully remove the
cochlea and predictably fared worse than the linear pyramids.
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FIGURE 10. Guinea pig cochlea a) original b) Morphological d) Linear e) Raw -Processing
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5.2.2 Unstructured White Noise

After the morphological pyramid proved successful in removing the strip artifact with bet-
ter results than the competing methods, the next logical step was to attempt the removal of
noise from the entire image. Unstructured white noise, approximating speckle noise, was
introduced to the USC.girl image resulting in figure 11.a. The next step was to attempt to
remove the noise using a variety of techniques.

An opening pyramid based on a flat 3 x 3 cross structuring element was generated. This
isolated the noise in the B0 image on one side of zero. The next step was to perform a
weakening of this band with a dilation by a flat 3 x 3 square of its adjacent band, B1, to
rt;.iove the noise. The image was then reconstructed using the normal process resulting in
the removal of the noise with a minimal loss of image quality, see Figure 11 .b.

For the two linear pyramids, each filter having a different cutoff frequency, I again
attempted to use between band correlation to remove the noise. The weakening strategy
had to be iteratively applied down the image pyramid as the noise was not isolated in one
band. This resulted in greater error in the reconstructed image as the correlation operation
does introduce some error. Figure 1 1.c shows the result of the first linear pyramid attempt
and it fails to completely remove the noise. The other linear pyramid attempt does succeed
in removing the noise but as Figure 11.d shows, a large amount of error was introduced.

The results would be incomplete if an attempt was not made to remove the same noise
with classical techniques on the raw image data. Thus a repetitive covolution with a Gaus-
sian lowpass mask was attempted. The results, Figure L1.e, clearly showed that the mor-
phological pyramid to be superior.

Some might argue that a simple opening operation on the raw image data would be much
simpler and as effective as the morphological pyramid. However, this is not true. If only
opening is done then some information will be lost as more than just the noise is removed.
When the pyramid is used, the noise is removed but the other information is added back
into the image during the reconstruction process. Thus resulting in better performance.

As the USC.girl results show, the morphological pyramid proved superici to all other
types of operations attempted. Each image has its corresponding RMS error which again
shows the morphological approach to be the best for this application
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FIGURE 11. USC.girl a) speckle noise b) Morphological PyTrmid c,d) Linear pyramid e) Convolution
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6.0 Conclusions

This research was initiated to find some application in which morphological pyramid
decompositions would provide the proper data representation, resulting in better results
than current linear practices. Three different image processing applications of morpholog-
ical pyramids were investigated: general image compression, image pyramid transforms,
and pyramid processing.

For the general image compression measures, a comparison between Burt's Laplacian pyr-
amid and a variety of morphological pyramids showed that the nonlinear pyramids could
not outperform the linear decomposition. Though the linear pyramid consistently outper-
formed the nonlinear pyramids, some of the morphological pyramids did provide close
results.

In the area of using the single value decompositions of image pyramids for compression,
no success was found. The SVDs of the raw image data, a linear pyramid, and several
morphological pyramids were examined. However, t he decomposition of the raw image
da" proved far superior, with respect to lossy compression error, to all the pyramids
attempted.

The final area of invest;gation was whether the nonlinear pyramids could provide a power-
ful image processing platform that could compete with both linear pyramids and classical
raw image processing techniques. The results in t' *.., ,, tion d1early showed the morpho-
logical pyramids could in fact be used for nois . and artifact removal with much more suc-
cess than classical raw image proce.sing and linear pyramid processing.

Our original goal of demonstrating a spi -ific application where the nonlinear image pyra-
mids could provide an equal or better method of data representation was accomplished.
The nonlinear pyramid approach proved to be superior to other linear practices in the area
of noise and artifact removal. No other method attempted could even come close to the
results that were obtained in this area.
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APPENDIX A

General Compressibility Results



LINEAR DECOMPOSITIONS

Dec. Filter: Mask 1 Mask 2 Mask 3 Mask 3

Interpolator: Mask 1 Mask 1 Mask 1 Mask 3

cellvar= 32.0117 44.5177 34.1990 43.2040

= 4.3284 4.5722 4.3812 4.5550

cellvar= 76.2796 66.8135 66.6020 73.7932

.1 H = 4.7928 4.5987 4.6548 4.6908

c4 var= 24.8096 34.4897 26.3730 31.5390

.0 H = 4.2835 4.5041 4.-262 4.4799

c4 var= 66.8618 63.5676 60.2686 66.6528

.1 H = 4.9499 4.9371 4.8838 4.9896

usc var= 78.3273 104.1386 82.3671 99.0217

.0 H = 4.7546 4.9567 4.7957 4.9359

usc var= 153.9719 105.6801 126.9528 118.0370

.1 H = 5.0710 4.8589 4.9208 4.9321

cochvar= 4.6887 10.8926 5.5107 9.7000

.0 H = 1.5399 1.9044 1.6701 1.8382

cochvar= 28.0918 28.9245 23.9694 20.9248

.1 H = 2.1917 2.2210 2.1529 2.2421



Morphological Open/Close Filters
Image

Open3 Open2 Openl Close3 Close2 Closel

cellvar= 47.0396 38.1042 35.6470 61.6138 41.5765 37.0612

.0 H = 4.6386 4.4636 4.4042 4.7192 4.5000 4.4249

cellvar= 99.5010 89.0100 85.8693 153.3447 95.1517 83.3942

.1 H = 4.8881 4.8467 4.8392 4.7300 4.7391 4.7355

c4 var= 41.6664 30.6186 28.1678 38.1413 29.0155 27.1932

.0 H = 4.6190 4.4209 4.3624 4.5672 4.3959 4.3482

c4 var= 87.9576 74.0757 70.0855 118.7665 79.9035 73.1989

.1 H = 5.0819 4.9797 4.9494 5.2101 5.0284 4.9931

usc var=164.9645 112.7772 95.2758 133.1236 98.9000 90.9297

.0 H = 5.0339 4.8766 4.8177 5.0955 4.9064 4.8388

usc var=166.1879 158.5428 164.8461 204.5522 i84.0000 180.1500

.1 H = 4.9157 4.9410 5.0142 5.1418 5.0794 5.1039

cochvar= 18.5640 11.7570 10.8354 7.1715 5.0484 4.6463

.0 H = 1.9110 1.7712 1.7017 1.7702 1.6129 1.5544

cochvar= 51.2361 35.9893 31.8528 29.1795 28.0779 28.3954

.1 H = 1.9951 2.0476 2.0809 2.3862 2.2419 2.1987



Morphological Dilate/Erode Filters

Dilate3 Dilate2 Dilatel Erode3 Erode2 Erodel

cellvar=18 7 .6 8 2 3  96.5397 68.9147 212.8918 97.6275 65.7415

.0 H = 5.0270 4.6489 4.4975 5.2518 4.7645 4.5787

cellvar=199.7612 173.7714 145.3631 594.2546 280.5948 187.1824

.1 H = 4.8042 4.6962 4.6892 5.8619 5.4070 5.2124

c4 var= 119.2735 60.2589 44.0260 123.7478 62.6035 45.3907

.0 H = 5.1457 4.6350 4.4557 5.2082 4.7125 4.5190

c4 var= 237.6876 154.3970 118.9445 319.1453 173.4942 124.6590

.1 H = 5.5716 5.2226 5.0707 5.8722 5.3985 5.1913

usc var= 425.2051 236.6170 168.1150 378.5289 215.0799 152.9301

.0 H = 5.5109 5.0958 4.9309 5.4045 5.0341 4.8945

usc var= 630.7359 431.9302 338.9891 465.7352 298.1260 246.9651

.1 H= 5.6159 5.3137 5.2379 5.4312 5.1359 5.0850

cochvar= 79.8322 35.8852 24.3568 72.4660 30.4239 19.3019

.0 H = 2.7994 2.2774 2.0049 2.2363 1.9559 1.7705

cochvar= 219.6546 98.5768 66.3602 106.2257 82.7359 64.6844

.1 H = 3.6326 3.0366 2.7760 1.9650 1.8745 1.8651



IMAGE ORIGINALS - Statistics

Cell Mean = 197.9106 variance = 1094.2032 Entropy = 6.6181

c4 Mean = 97.1678 variance = 1926.4603 Entropy = 7.4296

usc Mean = 126.0848 variance = 2793.2044 Entropy = 7.5930

coch* Mean = 9.1590 variance = 520.2139 Entropy = 2.9618

* 512 x 480

MASKS -

Mask - 1 Mask - 2

0 -.03 -.05 -. 03 0 9 13.6 16 13.6 9
-.03 .12 .25 .12 -. 03 13.6 24 32 24 13.6
-.05 .25 .60 .25 -. 05 16 32 64 32 16
-.03 .12 .25 .12 -. 03 13.6 24 32 24 13.6

0 -.03 -.05 -. 03 0 9 13.6 16 13.6 9

L3 - recover W/ L3

16 32 16
32 64 32

16 32 16

Structuring Elements -

*1 2 *3

NOTE l

NOTE All morphological pyramids use the LB Mask to interpolate


